Penyimpanan energi listrik di dalam kapasitor

Kapasitor tersusun dari dua pelat/lembar konduktor dan di antara kedua konduktor tersebut terdapat dielektrik. Pada mulanya kedua konduktor tidak bermuatan listrik. Agar kapasitor berfungsi maka masing-masing pelat/lembar konduktor harus bermuatan listrik, di mana jumlah muatan listrik pada masing-masing konduktor sama besar tetapi berbeda jenis. Misalkan salah satu konduktor bermuatan Q = +10 Coulomb maka konduktor lainnya bermuatan Q = -10 Coulomb. Adanya muatan listrik yang sama besar tetapi berlawanan jenis pada kedua konduktor menimbulkan medan listrik di antara kedua pelat konduktor, di mana arah medan listrik adalah dari muatan positif ke muatan negatif. Selain itu, timbul juga beda potensial listrik di antara kedua konduktor tersebut, di mana konduktor bermuatan positif mempunyai potensial listrik lebih tinggi sedangkan konduktor bermuatan negatif mempunyai potensial listrik lebih rendah.

Agar kedua konduktor bermuatan listrik maka kedua konduktor dihubungkan ke sumber listrik, misalnya baterai atau sumber listrik lainnya. Pada mulanya kedua konduktor bersifat netral di mana jumlah elektron yang bermuatan negatif dan proton yang bermuatan positif sama besar. Selanjutnya elektron-elektron dipindahkan dari sebuah konduktor ke konduktor lainnya sehingga konduktor yang kehilangan elektron menjadi bermuatan positif dan konduktor yang menerima elektron menjadi bermuatan negatif. Jumlah elektron yang dipindahkan sama dengan jumlah elektron yang diterima sehingga masing-masing konduktor mempunyai muatan listrik yang sama besar. Perlu diketahui bahwa ketika kapasitor dihubungkan ke baterai maka baterai berperan memindahkan elektron-elektron dari satu konduktor ke konduktor lainnya.

Penyimpanan energi listrik di dalam kapasitor 1Salah satu konduktor dihubungkan ke kutub negatif dan konduktor lainnya dihubungkan ke kutub positif. Adanya beda potensial listrik (V) antara kedua kutub baterai menyebabkan terjadi perpindahan elektron (q) dari salah satu konduktor ke konduktor lain. Perpindahan elektron terhenti setelah beda potensial antara kedua konduktor sama dengan beda potensial baterai. Pada mulanya ketika konduktor belum bermuatan listrik, tidak diperlukan kerja untuk memindahkan elektron. Setelah ada muatan listrik pada masing-masing konduktor, diperlukan kerja untuk memindahkan elektron. Semakin besar muatan listrik pada masing-masing konduktor, semakin besar kerja untuk memindahkan elektron karena adanya gaya tolak menolak antara elektron.

Perpindahan elektron dari satu konduktor ke konduktor lain tidak terjadi serentak tetapi bertahap sehingga tegangan listrik antara kedua konduktor juga meningkat secara bertahap. Jadi untuk menghitung kerja (W) total selama perpindahan elekton, digunakan nilai tegangan rata-rata (V/2). Jadi usaha yang dilakukan untuk memindahkan elektron adalah W = Q (V/2) = 1/2 Q V. Karena kerja untuk memindahkan elektron berubah menjadi energi potensial listrik yang tersimpan pada kapasitor maka energi potensial listrik yang tersimpan pada kapasitor adalah EP = 1/2 Q V. Karena Q = C V maka rumus EP = 1/2 Q V dapat diubah menjadi EP = 1/2 Q V = 1/2 (C V)(V) = 1/2 C V2 dan EP = 1/2 Q V = 1/2 (Q)(Q/C) = 1/2 Q2/C. Keterangan : Q = muatan listrik, C = kapasitansi, V = tegangan listrik.

Energi listrik di dalam medan listrik

Selama proses pengisian muatan, ketika masing-masing konduktor mulai bermuatan listrik maka di antara kedua pelat/lembar konduktor juga timbul medan listrik. Jadi usaha yang dilakukan selain menjadikan konduktor bermuatan listrik, juga secara tidak langsung menghadirkan medan listrik di antara kedua pelat/lembar konduktor. Karena usaha berubah menjadi energi potensial listrik yang tersimpan pada kapasitor, maka dapat dianggap energi itu tersimpan di dalam medan listrik.

Penurunan rumus berikut ini untuk membuktikan secara matematis keterkaitan antara energi potensial listrik dengan medan listrik.

Pada tulisan berjudul kapasitor keping sejajar telah diturunkan rumus C = A εo/s dan pada tulisan berjudul potensial listrik telah dinyatakan rumus V = E s. Sebelumnya telah diturunkan rumus energi potensial listrik yang tersimpan pada kapasitor yakni EP = 1/2 C V2.

Penyimpanan energi listrik di dalam kapasitor 2

Keterangan rumus : EP = energi potensial listrik, A = luas permukaan, s = jarak, A s = volume, E = medan listrik, EP/A s = energi potensial listrik per satuan volume = kerapatan energi.

Rumus di atas menyatakan bahwa energi potensial listrik per satuan volume ruang dalam suatu medan listrik sebanding dengan kuadrat medan listrik. Jika di antara kedua keping/lembar konduktor terdapat dielektrik maka εo (permitivitas ruang hampa) digantikan dengan permitivitas bahan (ε). Walaupun persamaan kerapatan energi ini diturunkan menggunakan persamaan kapasitor keping sejajar tetapi persamaan ini berlaku juga untuk semua ruang yang mempunyai medan listrik.

Referensi

Anda perlu masuk untuk melihat isi sepenuhnya. Silahkan . Bukan Member? Bergabung

error: