Perkalian titik menggunakan komponen vektor satuan

Kita dapat menghitung perkalian skalar secara langsung jika kita mengetahui komponen x, y dan z dari vektor A dan B (vektor yang diketahui).

Untuk melakukan perkalian titik dengan cara ini, terlebih dahulu kita lakukan perkalian titik dari vektor satuan, setelah itu kita nyatakan vektor A dan B dalam komponen-komponennya, menguraikan perkaliannya dan menggunakan perkalian dari vektor-vektor satuannya.

Vektor satuaj i, j dan k saling tegak lurus satu sama lain, sehingga memudahkan kita dalam perhitungan. Menggunakan persamaan perkalian skalar yang telah diturunkan di atas (A.B = AB cos teta) kita peroleh :

i . i = j . j = k . k = (1)(1) cos 0 = 1

i . j = i . k = j . k = (1)(1) cos 90o = 0

Sekarang kita nyatakan vektor A dan B dalam komponen-komponennya, menguraikan perkaliannya dan menggunakan perkalian dari vektor-vektor satuannya.

A . B = Axi . Bxi + Axi . Byj + Axi . Bzk +

Ayj . Bxi + Ayj . Byj + Ayj . Bzk +

Azk . Bxi + Azk . Byj + Azk . Bzk

A . B = AxBx (i . i) + AxBy (i . j) + Ax Bz (i . k) +

AyBx (j . i) + AyBy (j . j) + AyBz (j . k) +

AzBx (k . i) + AzBy (k . j) + AzBz (k . k)

Karena i . i = j . j = k . k = 1 dan i . j = i . k = j . k = 0, maka :

A . B = AxBx (1) + AxBy (0) + Ax Bz (0) +

AyBx (0) + AyBy (1) + AyBz (0) +

AzBx (0) + AzBy (0) + AzBz (1)

A . B = AxBx (1) + 0 + 0 +

0 + AyBy (1) + 0 +

0 + 0 + AzBz (1)

A . B = AxBx + AyBy + AzBz

Berdasarkan hasil perhitungan ini, bisa disimpulkan bahwa perkalian skalar atau perkalian titik dari dua vektor adalah jumlah dari perkalian komponen-komponennya yang sejenis.

Contoh Soal 1 :

Perkalian titik menggunakan komponen vektor satuan 1Besar vektor A dan B berturut-turut adalah 5 dan 4, sebagaimana tampak pada gambar di bawah. Sudut yang terbentuk adalah 90o. Hitunglah perkalian titik kedua vektor.

Pembahasan

Sebelum kita menghitung perkalian titik vektor A dan B, terlebih dahulu kita ketahui komponen vektor kedua tersebut.

Ax = (5) cos 0o = (5) (1) = 5

Ay = (5) sin 0o = (5) (0) = 0

Az = 0

Bx = (4) cos 90o = (4) (0) = 0

By = (4) sin 90o = (4) (1) = 4

Bz = 0

Vektor A hanya mempunyai komponen vektor pada sumbu x dan vektor B hanya mempunyai komponen vektor pada sumbu y. Komponen z bernilai nol karena vektor A dan B berada pada bidang xy.

Sekarang kita hitung perkalian titik antara vektor A dan B menggunakan persamaan perkalian titik dengan vektor komponen :

A . B = Ax Bx + AyBy + AzBz

A . B = (5) (0) + (0) (4) + 0

A . B = 0 + 0 + 0

A . B = 0

Coba kita bandingkan dengan cara pertama

A.B = AB cos teta

A.B = (4)(5) cos 90

A.B = (4) (5) (0)

A.B = 0

Hasilnya sama.

Contoh Soal 2 :

Perkalian titik menggunakan komponen vektor satuan 2Besar vektor A dan B berturut-turut adalah 5 dan 4, sebagaimana tampak pada gambar di bawah. Hitunglah perkalian titik kedua vektor tersebut, jika sudut yang terbentuk adalah 30o

Pembahasan

Sebelum kita menghitung perkalian titik vektor A dan B, terlebih dahulu kita ketahui komponen vektor kedua tersebut.

Perkalian titik menggunakan komponen vektor satuan 3

Komponen z bernilai nol karena vektor A dan B berada pada bidang xy.

Sekarang kita hitung perkalian titik antara vektor A dan B menggunakan persamaan perkalian titik dengan vektor komponen :

Perkalian titik menggunakan komponen vektor satuan 4

Bandingkan dengan cara pertama.

Perkalian titik menggunakan komponen vektor satuan 5

Anda perlu masuk untuk melihat isi sepenuhnya. Silahkan . Bukan Member? Bergabung