Perkalian titik menggunakan komponen vektor satuan

Materi Perkalian Titik Menggunakan Komponen Vektor Satuan

Kita dapat menghitung perkalian skalar secara langsung jika kita mengetahui komponen x, y dan z dari vektor A dan B (vektor yang diketahui).

Untuk melakukan perkalian titik dengan cara ini, terlebih dahulu kita lakukan perkalian titik dari vektor satuan, setelah itu kita nyatakan vektor A dan B dalam komponen-komponennya, menguraikan perkaliannya dan menggunakan perkalian dari vektor-vektor satuannya.

Vektor satuaj i, j dan k saling tegak lurus satu sama lain, sehingga memudahkan kita dalam perhitungan. Menggunakan persamaan perkalian skalar yang telah diturunkan di atas (A.B = AB cos teta) kita peroleh :

i . i = j . j = k . k = (1)(1) cos 0 = 1

i . j = i . k = j . k = (1)(1) cos 90o = 0

Sekarang kita nyatakan vektor A dan B dalam komponen-komponennya, menguraikan perkaliannya dan menggunakan perkalian dari vektor-vektor satuannya.

BACA JUGA  Pengertian rumus dan jenis-jenis gelombang mekanik

A . B = Axi . Bxi + Axi . Byj + Axi . Bzk +

Ayj . Bxi + Ayj . Byj + Ayj . Bzk +

Azk . Bxi + Azk . Byj + Azk . Bzk

A . B = AxBx (i . i) + AxBy (i . j) + Ax Bz (i . k) +

AyBx (j . i) + AyBy (j . j) + AyBz (j . k) +

AzBx (k . i) + AzBy (k . j) + AzBz (k . k)

Karena i . i = j . j = k . k = 1 dan i . j = i . k = j . k = 0, maka :

A . B = AxBx (1) + AxBy (0) + Ax Bz (0) +

AyBx (0) + AyBy (1) + AyBz (0) +

AzBx (0) + AzBy (0) + AzBz (1)

A . B = AxBx (1) + 0 + 0 +

0 + AyBy (1) + 0 +

0 + 0 + AzBz (1)

A . B = AxBx + AyBy + AzBz

Berdasarkan hasil perhitungan ini, bisa disimpulkan bahwa perkalian skalar atau perkalian titik dari dua vektor adalah jumlah dari perkalian komponen-komponennya yang sejenis.

Contoh Soal 1 :

Perkalian titik menggunakan komponen vektor satuan 1Besar vektor A dan B berturut-turut adalah 5 dan 4, sebagaimana tampak pada gambar di bawah. Sudut yang terbentuk adalah 90o. Hitunglah perkalian titik kedua vektor.

Pembahasan

Sebelum kita menghitung perkalian titik vektor A dan B, terlebih dahulu kita ketahui komponen vektor kedua tersebut.

Ax = (5) cos 0o = (5) (1) = 5

Ay = (5) sin 0o = (5) (0) = 0

Az = 0

Bx = (4) cos 90o = (4) (0) = 0

By = (4) sin 90o = (4) (1) = 4

BACA JUGA  Soal massa jenis kelas 7

Bz = 0

Vektor A hanya mempunyai komponen vektor pada sumbu x dan vektor B hanya mempunyai komponen vektor pada sumbu y. Komponen z bernilai nol karena vektor A dan B berada pada bidang xy.

Sekarang kita hitung perkalian titik antara vektor A dan B menggunakan persamaan perkalian titik dengan vektor komponen :

A . B = Ax Bx + AyBy + AzBz

A . B = (5) (0) + (0) (4) + 0

A . B = 0 + 0 + 0

A . B = 0

Coba kita bandingkan dengan cara pertama

A.B = AB cos teta

A.B = (4)(5) cos 90

A.B = (4) (5) (0)

A.B = 0

Hasilnya sama.

Contoh Soal 2 :

Perkalian titik menggunakan komponen vektor satuan 2Besar vektor A dan B berturut-turut adalah 5 dan 4, sebagaimana tampak pada gambar di bawah. Hitunglah perkalian titik kedua vektor tersebut, jika sudut yang terbentuk adalah 30o

Pembahasan

Sebelum kita menghitung perkalian titik vektor A dan B, terlebih dahulu kita ketahui komponen vektor kedua tersebut.

BACA JUGA  Hukum II Newton dalam bentuk momentum

Perkalian titik menggunakan komponen vektor satuan 3

Komponen z bernilai nol karena vektor A dan B berada pada bidang xy.

Sekarang kita hitung perkalian titik antara vektor A dan B menggunakan persamaan perkalian titik dengan vektor komponen :

Perkalian titik menggunakan komponen vektor satuan 4

Bandingkan dengan cara pertama.

Perkalian titik menggunakan komponen vektor satuan 5

Print Friendly, PDF & Email

Tinggalkan Balasan

Situs ini menggunakan Akismet untuk mengurangi spam. Pelajari bagaimana data komentar Anda diproses.

Eksplorasi konten lain dari Ilmu Pengetahuan

Langganan sekarang agar bisa terus membaca dan mendapatkan akses ke semua arsip.

Lanjutkan membaca