fbpx

Stress Strain Young’s modulus – Problems and Solutions

Stress Strain Young’s modulus – Problems and Solutions

1. A nylon string has a diameter of 2 mm, pulled by a force of 100 N. Determine the stress!

Known :

Force (F) = 100 N

Diameter (d) = 2 mm = 0.002 m

Radius (r) = 1 mm = 0.001 m

Wanted : The stress

Solution :

Area :

A = π r2

A = (3.14)(0.001 m)2 = 0.00000314 m2

A = 3.14 x 10-6 m2

The stress :

Stress, strain, Young's modulus sample problems with solutions 1

See also  Carnot engine (application of the second law of thermodynamics) - problems and solutions

2. A cord has original length of 100 cm is pulled by a force. The change in length of the cord is 2 mm. Determine the strain!

Known :

Original length (l0) = 100 cm = 1 m

The change in length (Δl) = 2 mm = 0.002 m

Wanted : The strain

Solution :

The strain :

Stress, strain, Young's modulus sample problems with solutions 2

See also  Normal force equation

3. A string 4 mm in diameter has original length 2 m. The string is pulled by a force of 200 N. If the final length of the spring is 2.02 m, determine : (a) stress (b) strain (c) Young’s modulus

Known :

Diameter (d) = 4 mm = 0.004 m

Radius (r) = 2 mm = 0.002 m

Area (A) = π r2 = (3.14)(0.002 m)2

Area (A) = 0.00001256 m2 = 12.56 x 10-6 m2

Force (F) = 200 N

Original length of spring (l0) = 2 m

The change in length (Δl) = 2.02 – 2 = 0.02 m

Wanted : (a) The stress (b) The strain c) Young’s modulus

Solution :

(a) The stress

Stress, strain, Young's modulus sample problems with solutions 3

(b) The Strain

Stress, strain, Young's modulus sample problems with solutions 4

(c) Young’s modulus

Stress, strain, Young's modulus sample problems with solutions 5

See also  Diffraction by a single slit – problems and solutions

4. A string has a diameter of 1 cm and the original length of 2 m. The string is pulled by a force of 200 N. Determine the change in length of the string! Young’s modulus of the string = 5 x 109 N/m2

Known :

Young’s modulus (E) = 5 x 109 N/m2

Original length (l0) = 2 m

Force (F) = 200 N

Diameter (d) = 1 cm = 0.01 m

Radius (r) = 0.5 cm = 0.005 m = 5 x 10-3 m

Area (A) = π r2 = (3.14)(5 x 10-3 m)2 = (3.14)(25 x 10-6 m2)

Area (A) = 78.5 x 10-6 m2 = 7.85 x 10-5 m2

Wanted : The change in length (Δl)

Solution :

Young’s modulus formula :

Stress, strain, Young's modulus sample problems with solutions 6

The change in length :

Stress, strain, Young's modulus sample problems with solutions 7

See also  Distance and displacement - problems and solutions

5. A concrete has a height of 5 meters and has unit area of 3 m3 supports a mass of 30,000 kg. Determine (a) The stress (b) The strain (c) The change in height! Acceleration due to gravity (g) = 10 m/s2. Young’s modulus of concrete = 20 x 109 N/m2

Known :

Young’s modulus of concrete = 20 x 109 N/m2

Initial height (l0) = 5 meters

Unit area (A) = 3 m2

Weight (w) = m g = (30,000)(10) = 300,000 N

Wanted : (a) The stress (b) The strain (c) The change in height!

Solution :

(a) The stress

Stress, strain, Young's modulus sample problems with solutions 8

(b) The Strain

Stress, strain, Young's modulus sample problems with solutions 9

(c) The change in height

Stress, strain, Young's modulus sample problems with solutions 10

See also  Double slit interference – problems and solutions

  1. Hooke’s law
  2. Stress, strain, Young’s modulus

Print Friendly, PDF & Email

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Discover more from Physics

Subscribe now to keep reading and get access to the full archive.

Continue reading